BezierCurveModel.cs 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. using System.Threading.Tasks;
  6. using Prism.Mvvm;
  7. using System.Windows;
  8. using System.Collections;
  9. using MathNet.Numerics.LinearAlgebra.Factorization;
  10. namespace FlowChartModule.绘制模块
  11. {
  12. public class BezierCurveModel : BindableBase
  13. {
  14. private Point _StartPoint;
  15. private Point _ControlPoint1 ;
  16. private Point _ControlPoint2;
  17. private Point _EndPoint;
  18. public Point StartPoint
  19. {
  20. get
  21. {
  22. return _StartPoint;
  23. }
  24. set
  25. {
  26. ControlPoint1 = CalculateMiddlePointWithSimpleControlPoints(StartPoint, EndPoint, 0.3f);
  27. ControlPoint2 = CalculateMiddlePointWithSimpleControlPoints(StartPoint, EndPoint, 0.75f);
  28. SetProperty(ref _StartPoint, value);
  29. }
  30. }
  31. public Point ControlPoint1
  32. {
  33. get
  34. {
  35. return _ControlPoint1;
  36. }
  37. set
  38. {
  39. SetProperty(ref _ControlPoint1, value);
  40. }
  41. }
  42. public Point ControlPoint2
  43. {
  44. get
  45. {
  46. return _ControlPoint2;
  47. }
  48. set
  49. {
  50. SetProperty(ref _ControlPoint2, value);
  51. }
  52. }
  53. public Point EndPoint
  54. {
  55. get
  56. {
  57. return _EndPoint;
  58. }
  59. set
  60. {
  61. ControlPoint1 = CalculateMiddlePointWithSimpleControlPoints(StartPoint,EndPoint,0.3f);
  62. ControlPoint2 = CalculateMiddlePointWithSimpleControlPoints(StartPoint, EndPoint, 0.75f);
  63. SetProperty(ref _EndPoint, value);
  64. }
  65. }
  66. // 计算三阶贝塞尔曲线上指定 t 值的点
  67. public static Point CalculateCubicBezierPoint(Point p0, Point p1, Point p2, Point p3, double t)
  68. {
  69. double u = 1 - t;
  70. double tt = t * t;
  71. double uu = u * u;
  72. double uuu = uu * u;
  73. double ttt = tt * t;
  74. double x = uuu * p0.X + 3 * uu * t * p1.X + 3 * u * tt * p2.X + ttt * p3.X;
  75. double y = uuu * p0.Y + 3 * uu * t * p1.Y + 3 * u * tt * p2.Y + ttt * p3.Y;
  76. return new Point(x, y);
  77. }
  78. // 根据起点和终点简单生成控制点并计算中间点
  79. public static Point CalculateMiddlePointWithSimpleControlPoints(Point start, Point end, double t)
  80. {
  81. // 简单线性插值确定控制点
  82. Point p1 = new Point(start.X + (end.X - start.X) * 0.25f, start.Y + (end.Y - start.Y) * 0.25f);
  83. Point p2 = new Point(start.X + (end.X - start.X) * 0.75f, start.Y + (end.Y - start.Y) * 0.75f);
  84. return CalculateCubicBezierPoint(start, p1, p2, end, t);
  85. }
  86. }
  87. }